
Copyright Undo Ltd, 2015

Becoming a GDB Power User

Greg Law
Co-founder and CEO, Undo software

Copyright Undo Ltd, 2015

Recap of Lightning Talk

▪ TUI mode
▪ Python
▪ Reversible debugging

Copyright Undo Ltd, 2015

Python Pretty Printers

class MyPrinter(object):

 def __init__(self,val):

 self.val = val

 def to_string(self):

 return (self.val[‘member’])

import gdb.printing

pp = gdb.printing.RegexpCollectionPrettyPrinter('mystruct')

pp.add_printer('mystruct', '^mystruct$', MyPrinter)

gdb.printing.register_pretty_printer(gdb.current_objfile(), pp)

Copyright Undo Ltd, 2015

.gdbinit

My ~/.gdbinit is nice and simple:
 set history save on
 set print pretty on

If you’re funky, it’s easy for weird stuff to happen.
Hint: have a project gdbinit with lots of stuff in it,
and source that.

Copyright Undo Ltd, 2015

Multiprocess Debugging

Debug multiple ‘inferiors’ simultaneously
Add new inferiors
Follow fork/exec

Copyright Undo Ltd, 2015

Non-stop mode

Other threads continue while you’re at the prompt

Copyright Undo Ltd, 2015

Breakpoints and watchpoints

watch foo stop when foo is modified
watch -l foo watch location
rwatch foo stop when foo is read
watch foo thread 3 stop when thread 3 modifies foo
watch foo if foo > 10 stop when foo is > 10

Copyright Undo Ltd, 2015

thread apply

thread apply 1-4 print $sp

thread apply all backtrace

Copyright Undo Ltd, 2015

calling inferior functions

call foo() will call foo in your inferior
But beware, print may well do too, e.g.

print foo()

print foo+bar if C++

print errno

And beware, below will call strcpy() and malloc()!
call strcpy(buffer, “Hello, world!\n”)

Copyright Undo Ltd, 2015

Dynamic Printf

Use dprintf to put printf’s in your code without
recompiling, e.g.
dprintf mutex_lock,"m is %p m->magic is %u\n",m,m->magic

control how the printfs happen:
set dprintf-style gdb|call|agent

set dprintf-function fprintf

set dprintf-channel mylog

Copyright Undo Ltd, 2015

Catchpoints

Catchpoints are like breakpoints but catch certain
events, such as C++ exceptions

e.g. catch catch to stop when C++ exceptions are caught

e.g. catch syscall nanosleep to stop at nanosleep system call

e.g. catch syscall 100 to stop at system call number 100

Copyright Undo Ltd, 2015

More Python

Create your own commands
 class my_command(gdb.Command):

 '''doc string'''

 def __init__(self):

 gdb.Command.__init__(self, 'my-command', gdb.COMMAND_NONE)

 def invoke(self, args, from_tty):

 do_bunch_of_python()

 my_command()

Copyright Undo Ltd, 2015

Yet More Python

Hook certain kinds of events

def stop_handler(ev):
 print('stop event!')
 if isinstance(ev, gdb.SignalEvent):
 print('its a signal: ' + ev.stop_signal)

gdb.events.stop.connect(stop_handler)

Copyright Undo Ltd, 2015

Other cool things...

▪ tbreak temporary breakpoint
▪ rbreak reg-ex breakpoint
▪ command list of commands to be executed when breakpoint hit
▪ silent special command to suppress output on breakpoint hit
▪ save breakpoints save a list of breakpoints to a script
▪ save history save history of executed gdb commands
▪ info line foo.c:42 show PC for line
▪ info line * $pc show line begin/end for current program counter

And finally...

▪ gcc’s -g and -O are orthogonal; gcc -Og is optimised but doesn’t mess up debug
▪ see also gdb dashboard on github

