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Recap of Lightning Talk

▪ TUI mode
▪ Python
▪ Reversible debugging
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Python Pretty Printers

class MyPrinter(object):

    def __init__(self,val):

        self.val = val

    def to_string(self):

        return ( self.val[‘member’])

import gdb.printing

pp = gdb.printing.RegexpCollectionPrettyPrinter('mystruct')

pp.add_printer('mystruct', '^mystruct$', MyPrinter)

gdb.printing.register_pretty_printer( gdb.current_objfile(), pp)
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.gdbinit

My ~/.gdbinit is nice and simple:
 set history save on
  set print pretty on

If you’re funky, it’s easy for weird stuff to happen.
Hint: have a project gdbinit with lots of stuff in it, 
and source that.
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Multiprocess Debugging

Debug multiple ‘inferiors’ simultaneously
Add new inferiors
Follow fork/exec
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Non-stop mode

Other threads continue while you’re at the prompt
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Breakpoints and watchpoints

watch foo stop when foo is modified
watch -l foo watch location
rwatch foo stop when foo is read
watch foo thread 3 stop when thread 3 modifies foo
watch foo if foo > 10 stop when foo is > 10
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thread apply

thread apply 1-4 print $sp

thread apply all backtrace
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calling inferior functions

call foo() will call foo in your inferior
But beware, print may well do too, e.g.

print foo()

print foo+bar if C++

print errno

And beware, below will call strcpy() and malloc()!
call strcpy( buffer, “Hello, world!\n”)
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Dynamic Printf

Use dprintf to put printf’s in your code without 
recompiling, e.g.
dprintf mutex_lock,"m is %p m->magic is %u\n",m,m->magic

control how the printfs happen:
set dprintf-style gdb|call|agent

set dprintf-function fprintf

set dprintf-channel mylog
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Catchpoints

Catchpoints are like breakpoints but catch certain 
events, such as C++ exceptions

e.g. catch catch to stop when C++ exceptions are caught

e.g. catch syscall nanosleep to stop at nanosleep system call

e.g. catch syscall 100 to stop at system call number 100
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More Python

Create your own commands
    class my_command( gdb.Command):

        '''doc string'''

        def __init__( self):

            gdb.Command.__init__( self, 'my-command', gdb.COMMAND_NONE)

        def invoke( self, args, from_tty):

             do_bunch_of_python()

    my_command()
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Yet More Python

Hook certain kinds of events

def stop_handler( ev):
    print( 'stop event!')
    if isinstance( ev, gdb.SignalEvent):
        print( 'its a signal: ' + ev.stop_signal)

gdb.events.stop.connect( stop_handler)
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Other cool things...

▪ tbreak temporary breakpoint
▪ rbreak reg-ex breakpoint
▪ command list of commands to be executed when breakpoint hit
▪ silent special command to suppress output on breakpoint hit
▪ save breakpoints save a list of breakpoints to a script
▪ save history save history of executed gdb commands
▪ info line foo.c:42 show PC for line
▪ info line * $pc show line begin/end for current program counter

And finally...

▪ gcc’s -g and -O are orthogonal; gcc -Og is optimised but doesn’t mess up debug
▪ see also gdb dashboard on github


